If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2+142x-11=0
a = 13; b = 142; c = -11;
Δ = b2-4ac
Δ = 1422-4·13·(-11)
Δ = 20736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{20736}=144$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(142)-144}{2*13}=\frac{-286}{26} =-11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(142)+144}{2*13}=\frac{2}{26} =1/13 $
| 108=12x-53 | | 4x-11=5x | | x^2+1.80x=0.1425 | | 15.44+y=23.44 | | x^2+1.80x-0.1425=0 | | 4.25m=-51 | | 1/4y=-2.5 | | y/4=-1/40 | | a/2+a/3=5/6 | | 5x-6=17+5x-23 | | |2v+10|=4 | | H(x)=|2x+8| | | X+2y=470 | | 3(6-f)-44=3f-4 | | 4(x-5)-7x=3x+2(4x-1)-4 | | R=4x-18 | | 2v+10=4 | | x*(2*x)=0 | | x+2*x=0 | | 12-5x=-8x+18 | | 288=x*(2*x) | | 3(6^x)=27 | | 5.2y=25 | | 4x+5x-3=3x+2 | | 20+2n=180 | | 5x+7=2x-49 | | 2p^2-14p-36=0 | | 18-9y=y^2+8y+16 | | (2t-1)(2t+1)-(4t-3)=4t*(t-2) | | 2*(3+n)=14 | | 9/4x=3/5 | | -5x^2+25x-30=0 |